Hierarchical Clustering of Breast Cancer Methylomes Revealed Differentially Methylated and Expressed Breast Cancer Genes
نویسندگان
چکیده
Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs) and the hypomethylation of the megabase-sized partially methylated domains (PMDs) are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI) was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma) dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation.
منابع مشابه
اپیژنتیک سرطان پستان: مقاله مروری
Stable molecular changes during cell division without any change in the sequence of DNA molecules is known as epigenetic. Molecular mechanisms involved in this process, including histone modifications, methylation of DNA, protein complex and RNA antisense. Cancer genome changes happen through a combination of DNA hypermethylation, long-term epigenetic silencing with heterozygosis loss and genom...
متن کاملGene expression profiling in women with breast cancer in a Saudi population.
OBJECTIVE To generate consensus gene expression profiles of invasive breast tumors from a small cohort of Saudi females, and to explore the possibility that they may be broadly conserved between Caucasian and Middle Eastern populations. METHODS This study was performed at King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia, from January 2005 to January 2007. G...
متن کاملThe miR526b-5p-Related Single Nucleotide Polymorphisms, rs72618599, Located in 3\'-UTR of TCF3 Gene, is Associated with the Risk of Breast and Gastric Cancers
Introduction: Single nucleotide polymorphisms result in dysregulation of the proto-oncogene TCF3 gene, which is associated with the development, metastasis, and chemoresistance of different malignancies. Methods: GSE10810 microarray dataset and GEPIA2 online software were used to find differentially expressed genes and the TCF3 status in breast cancer (BC) and gastric cancer (GC), respectively....
متن کاملبه کارگیری روشهای خوشهبندی در ریزآرایه DNA
Background: Microarray DNA technology has paved the way for investigators to expressed thousands of genes in a short time. Analysis of this big amount of raw data includes normalization, clustering and classification. The present study surveys the application of clustering technique in microarray DNA analysis. Materials and methods: We analyzed data of Van’t Veer et al study dealing with BRCA1...
متن کاملUse of Gene Expression Profiles of Peripheral Blood Lymphocytes to Distinguish BRCA1 Mutation Carriers in High Risk Breast Cancer Families
Mutations in two major genes, BRCA1 and BRCA2, account for up to 30% of families with hereditary breast cancer. Unfortunately, in most families there is little to indicate which gene should be targeted first for mutation screening, which is labor intensive, time consuming and often prohibitively expensive. As BRCA1 is a tumor suppressor gene involved in various cellular processes, heterozygous ...
متن کامل